
QL Assembly Language Mailing List

Issue 002

Norman Dunbar

Copyright c©2014-2015 Norman Dunbar

PUBLISHED BY MEMYSELFEYE PUBLISHING ;-)

Licensed under the Creative Commons Attribution-NonCommercial 3.0 Unported License (the
“License”). You may not use this file except in compliance with the License. You may obtain a
copy of the License at http://creativecommons.org/licenses/by-nc/3.0. Unless required
by applicable law or agreed to in writing, software distributed under the License is distributed on an
“AS IS” BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and limitations under the License.

First printing, July 2015

This pdf document was created on D:20160209102713Z.

http://creativecommons.org/licenses/by-nc/3.0

Contents

1 Preface . 11

1.1 Feedback 11

1.2 Subscribing to The Mailing List 11

1.3 Contacting The Mailing List 12

2 Merry Christmas . 13

3 Comments on Issue 1 . 15

3.1 Special Programs 15

3.2 The Extra 12 bytes 16

3.3 The EX Files - Page 6 16

3.4 LibGen Lite Errors 16

3.5 ET Phone Home 17

3.6 Actual Use of LibGen_Lite 17

4 Chips and PEAs . 19

5 LibGen News . 23

6 What’s in a Name? . 25

6.1 The Code 25

6.2 How to Run the Code 29

6.3 What if There Are More Parameters? 29

7 QL Assembly - Comments by George Gwilt . 31

List of Tables

List of Figures

4.1 The stack structure . 21

Listings

4.1 Contrived C Code . 19

4.2 Contrived Assembly Code . 20

4.3 PEA Equivalent Code . 20

4.4 Contrived Assembly Code - AddTwoNumbers . 20

4.5 LINK Effective Code . 21

4.6 UNLK Effective Code . 21

6.1 GetName - Definition Block . 25

6.2 GetName - Name Table & Name List Definition . 26

6.3 GetName - Equates . 26

6.4 GetName - Checking Parameters . 27

6.5 GetName - We Have a Name . 27

6.6 GetName - Find it in the Name List . 27

6.7 GetName - Copy Name to Buffer . 27

6.8 GetName - Checking Channel #1 . 28

6.9 GetName - Printing the Name . 28

7.1 PEA Example from Gwass Assembler . 31

7.2 PEA Stacking a Literal Value . 31

7.3 Saving an RTS Instruction . 32

7.4 Wasting an RTS Instruction . 32

7.5 George’s Linked List Example Program . 33

1. Preface

1.1 Feedback

Please send all feedback to assembly@qdosmsq.dunbar-it.co.uk. You may also send articles
to this address, however, please note that anything sent to this email address may be used in a future
issue of the eMagazine. Please mark your email clearly if you do not wish this to happen.

This eMagazine is created in LATEXsource format, aka plain text with a few formatting commands
thrown in for good measure, so I can cope with almost any format you might want to send me. As
long as I can get plain text out of it, I can convert it to a suitable source format with reasonable ease.

I use a Linux system to generate this eMagazine so I can read most, if not all, Word or MS Office
documents, Quill, Plain text, email etc formats. Text87 might be a problem though!

1.2 Subscribing to The Mailing List

This eMagazine is available by subscribing to the mailing list. You do this by sending your
favourite browser to http://qdosmsq.dunbar-it.co.uk/mailinglist and clicking on the
link “Subscribe to our Newsletters”.

On the next screen, you are invited to enter your email address twice, and your name. If you wish
to receive emails from the mailing list in HTML format then tick the box that offers you that option.
Click the Subscribe button.

An email will be sent to you with a link that you must click on to confirm your subscription. Once
done, that is all you need to do. The rest is up to me!

assembly@qdosmsq.dunbar-it.co.uk
http://qdosmsq.dunbar-it.co.uk/mailinglist

12 Chapter 1. Preface

1.3 Contacting The Mailing List

I’m rather hoping that this mailing list will not be a one-way affair, like QL Today appeared to be.
I’m very open to suggestions, opinions, articles etc from my readers, otherwise how do I know
what I’m doing is right or wrong?

I suspect George will continue to keep me correct on matters where I get stuff completely wrong, as
before, and I know George did ask if the list would be contactable, so I’ve set up an email address
for the list, so that you can make comments etc as you wish. The email address is:

assembly@qdosmsq.dunbar-it.co.uk

Any emails sent there will eventually find me. Please note, anything sent to that email address will
be considered for publication, so I would appreciate your name at the very least if you intend to
send something. If you do not wish your email to be considered for publication, please mark it
clearly as such, thanks. I look forward to hearing from you all, from time to time.

If you do have an article to contribute, I’ll happily accept it in almost any format - email, text, Word,
Libre/Open Office odt, Quill, PC Quill, etc etc. Ideally, a LATEXsource document is the best format,
because I can simply include those directly, but I doubt I’ll be getting many of those! But not to
worry, if you have something, I’ll hopefully manage to include it.

assembly@qdosmsq.dunbar-it.co.uk

2. Merry Christmas

It’s probably a little late to wish you a Happy Christmas but this year all my followers received a
free download of a slightly updated eBook containing all the articles published in QL Today over
the past ‘n’ years (longer than I care to think about!)

All the diagrams etc have been converted from ASCII art to use proper png formats created with
the “graphviz” utility (http://www.graphviz.org/). There was quite a bit of work involved in
getting the old text, diagrams and code converted to LATEX(that’s how they like it to be written!) but
I think, so far, everyone thinks that a good job has been done. Even if I say so myself.

The eBook has been typeset using LATEXwhich is a professional system, much loved and used
in academia and science for thesis1 and scientific papers. I even have a couple, probably more,
technical manuals written and published using LATEX, my favourite being Compiler Design in C by
Allen Holub. Speaking of compiler design, there are some relevant bits coming up in this issue on
this matter, but don’t panic!

If you have not already downloaded your free copy - it’s in pdf format only at the moment,
then please go to http://qdosmsq.dunbar-it.co.uk/downloads/QLToday/QL_Assembly.

pdf and help yourself. I am looking into converting the pdf to other formats as some of my
readers would like a version for Kindle and other eReaders.

Elsewhere in this issue, you will find some observations by George Gwilt on this eBook and its
contents. George also has comments and observations on the first issue of this eMagazine, they are
coming up next...

Happy new year, may all my readers enjoy a prosperous 2015.

1What is the plural of thesis?

http://www.graphviz.org/
http://qdosmsq.dunbar-it.co.uk/downloads/QLToday/QL_Assembly.pdf
http://qdosmsq.dunbar-it.co.uk/downloads/QLToday/QL_Assembly.pdf

3. Comments on Issue 1

This chapter is dedicated to George Gwilt’s feedback on some of the content of the first issue of the
eMagazine.

3.1 Special Programs

As Norman says, Special Programs are signalled by an extra word, $4AFB, after the program’s
name. In such a program there follows a set of instructions ending with RTS. These instructions are
called as a subroutine inside the keywords EX, EW and ET (EX..) before they get around to creating
and activating the job. That is why the instructions are obeyed “in the context of SuperBASIC”, as
are all keywords.

[ND] Now that small explanation makes it all clear, which is more than the official docs have been
able to do! (For me, anyway.)

A description of how to write such a subroutine is given in section 3.5 of Jochen Merz’s QDOS
Reference Manual.

An example of the use of a special program is to be found in the SMSQ/E source code, in the
program extras_exe_source_cct_asm. This program aims to concatenate a set of files and write
them to an output file. All these files, including the output one, are to be named as channels to
the program when it is executed. EX.. would happily try to open these, putting their IDs on the
stack. If the output file does not exist, an error would be signalled by EX... It is to avoid this that
the special program is invoked.

Having dealt with pipes and the parameter string, EX.. will go through the list of channels appearing,
separated by commas, after the program name. But, just before this is done the special routine is
called. This allows the program ..._cct_asm to process the channels itself. It is thus able to open
the output file as a new one, as well as processing the set of files to be concatenated. When it has
finished doing this it amends the pointers to the parameters, set in A3 and A5, so that EX.. find that
there are no channels to deal with before activating the job.

extras_exe_source_cct_asm
..._cct_asm

16 Chapter 3. Comments on Issue 1

3.2 The Extra 12 bytes

The program in SMSQ/E which contains the code for EX.. is sbsext_ext_exsbas_asm which
also contains the code for Special Programs. The program calculates how much data space to set
for the Trap #1 call to MT_CJOB, which creates the job. If r is the number of channels and p the
length of the parameter list, the addition made to the program’s data space is:

4(r+3)+ p

rounded up to even.

The reasoning is this. For each channel we need 4 bytes; for the parameter string we need p bytes,
rounded up; for the two counts we need 4 bytes; and, just in case there are two pipes, we need a
further 8 bytes. If both r and p are zero you can see that indeed 12 bytes are added. Also, if there
are no pipes then 8 bytes have been added unnecessarily.

3.3 The EX Files - Page 6

When a job is activated the registers A4 to A7 are set as Norman describes apart from two details.

• The size of data space is A5−A4 not A5.
• A6 certainly points to the end of the internal job header, but not necessarily to the start of

code. This is because, when a job is created by MT_CJOB, A1 either points to the absolute
address of the start of code or is zero. Only when A1 is zero does A6 point to the start of
code, which in this case does follow the internal header.

[ND] Ugh! A silly mistake to make in the case of A5. I had also forgotten that a job can be created
with the code immediately following the job header or with just a pointer to existing code elsewhere
in memory.

The facility to choose the address of the start of code allows the setting up of several programs,
which have to be re-entrant, each with the same copy of code in ram, but, of course, with different
data spaces and internal job headers

[ND] A perfect example of this is Adrian Dickens’ Self-cloning Program in chapter 4.4.2 of The QL
Advanced User Guide, page 55. Unfortunately, as written, it uses an absolute address to fetch the
SV_RAND word from the system variables, so probably will not work on many modern machines.

3.4 LibGen Lite Errors

The program as it stands will not run on an unexpanded QL, though it should work on QPC2,
for example. The reason is that ’buffer’ is set up at an odd boundary. Oddly enough this is quite
obvious from the example of the use of the program. This contains the line:

BUFFER EQU ∗+$000000017

This is an error I found myself committing again and again. It is caused by having an odd number
of characters in the preceding string. Now, I always set strings using code which ends with:

DS .W 0

sbsext_ext_exsbas_asm

3.5 ET Phone Home 17

This sets the PC to the next even boundary from the end of the string. QPC2 has the 680020+
instruction set which allows word and long word accesses to an odd boundary which the 68000/8
does not.

[ND] Another silly mistake. I could have sworn I used DS.W to ensure that storage was reserved
and was on a word boundary, it turns out I used DS.B which gives rise to the problem George has
pointed out above.

3.5 ET Phone Home

I have never been able to use JMON. On the other hand I use QMON regularly. Indeed I did use it
to go through the (working) version of LibGen_Lite I typed up. However, to call QMON I had to
put a commma between QMON#6 and 23.

I should explain that I always use QMON in a daughter basic set up with #6 opened to a CON
channel with window 512,204,0,0 and name ’x’, for easy access. Also I had more programs running
than Norman when I ET’d LibGen_Lite.

I’m afraid I used NET_PEEK to find LibGen_Lite’s program number after ETing it. I also
sometimes used NET_PEEK instead of QMON to see what was on the stack after ETing.

3.6 Actual Use of LibGen_Lite

Norman’s program helps to solve a real problem. This is when you want to include an assembled
program using the command LIB, which brings in the binary.

This has no symbols, so, if you want to access the program at some intermediate points you need to
set up an appropriate set of equates.

This of course is what LibGen_Lite does. It will arrange for an appropriate SYM_LST file to be
added just before the LIB which brings in the program itself.

A real example is the program PEAS_BIN, which is part of EasyPEasy. This program, will, on
assembly, give rise to a SYM_LST file with over 50 entries. In fact only six of these are required to
access the set of subroutines.

It would not matter too much if all the entries were included in the SYM_LST file, were it not that
many of the unwanted equates referred to nondescript labels such as "l1" and "l2" which could well
be used in the main program thus causing an error in assembly.

In fact I did find just that which made it impossible to use the complete SYM_LST file. Hence the
abbreviated SYM_LST file published with PEAS_BIN.

So, the question is, how might one amend LibGen_Lite to produce a required subset of equates?

[ND] One suggestion that comes rather quickly to mind, is to have a well documented format for
the _SYM file which would allow the program to simply scan through looking for the “record type”
that determines when a symbol is an offset to some code, or a simple EQU.

I did originally write a small SuperBasic routine to extract the code offsets symbols and their values
from a raw _SYM file, but was advised by George that the _SYM files created by GWASL and
GWASS are different and that it would be best to use the textual SYM_LST files instead.

Another method would be for me to iron the bugs out of the full sized LibGen and get it working!

4. Chips and PEAs

George has some comments elsewhere in this issue on the Christmas eBook in which he mentions
my lack of useful uses of the LINK, UNLK and PEA instructions.

I mentioned compilers earlier myself, so now is the time to combine these into an example of the
use of these instructions, which were, apparently, originally designed for compiler writers to use.
They are certainly useful for converting C code, for example, into assembler. Take the following
slightly contrived C code:

1 vo id addTwoNumbers (s h o r t va lue_a , s h o r t va lue_b , l ong ∗ r e s u l t)
2 {
3 long temp ;
4
5 temp = v a l u e _ a ;
6 temp += v a l u e _ b ;
7
8 ∗ r e s u l t = temp ;
9 }

10
11 i n t main (i n t a rgc , c h a r ∗ a rgv [])
12 {
13 long Answer = 0 ;
14 s h o r t a = 27 ;
15 s h o r t b = 33 ;
16 addTwoNumbers (a , b , &Answer) ;
17 p r i n t f (" a=%d , b=%d , a+b=%l d " , a , b , Answer) ;
18 }

Listing 4.1: Contrived C Code

You can see that addTwoNumbers is a rather simple function that takes two values to be added
together, value_a and value_b, which are short integers, or 16 bit words in assembly speak, and a
pointer to a long integer, result. Result is the address of a 32 bit long word, where the calculated

20 Chapter 4. Chips and PEAs

value will be stored.

The two numbers to be added are passed by value, while the result variable is passed by reference.
This means that regardless of what the function does to the variables value_a and value_b, nothing
will happen to them in the calling program as within the function, they are copies of the variables
rather than the actual variables themselves.

In C, if you wish to amend a variable passed as a parameter to a function, then you must pass the
address of the variable - a reference to the variable in other words. Mind you, the reference is itself
passed by value as a copy of the real address, so the function cannot change the address, only what
it points to.

Did I mention how simple compiler writing is? (George might have some comments to make
here, he is Turbo Man these days and maintains and improves the much loved Turbo Compiler and
toolkit.)

Yes, I know the C code above can be rewritten to be much much simpler, and to return the actual
result through the normal manner in C, using the return command, but bear with me, I’m trying
to demonstrate the LINK, UNLK and PEA instructions!

The local variable temp will have space allocated on the stack for it, and when the function ends,
this temporary work space will be removed. With a compiler producing code for the Motorola
68000 series of processors, the code generated could resemble the following.

1
2 main equ ∗
3
4 Answer dc . l 0
5 a dc .w 27
6 b dc .w 33
7
8 l e a a , a0 Get a d d r e s s o f a .
9 move .w (a0) , − (a7) S t a c k a ’ s v a l u e 2 7 .

10 l e a b , a0 Get a d d r e s s o f b .
11 move .w (a0) , − (a7) S t a c k b ’ s v a l u e 3 3 .
12 pea Answer S t a c k r e f e r e n c e t o Answer .
13 b s r addTwoNumbers
14 S t a c k _ t i d y adda . l #2+2+4 , a7 Tidy t h e s t a c k .
15 . . .

Listing 4.2: Contrived Assembly Code

The code for main starts with some space allocated for the variables defined within the C code.
Then, a copy of the values of variables a and b are pushed onto the stack, followed by the address
of the variable Answer.

After the function call, these 8 bytes are tidied off the stack, before main carries on with whatever
comes next.

The PEA instruction is roughly equivalent to the following code:

1 l e a Answer , a0
2 move . l a0 ,−(a7)

Listing 4.3: PEA Equivalent Code

Back to the contrived example, the assembly code created for the function, might be as follows:

16 addTwoNumbers equ ∗

21

17 l i n k a6 ,−4 Loca l v a r i a b l e temp .
18 move . l a0 ,−(a7) Save working r e g i s t e r .
19 c l r . l −4(a6) L o c a l s d e f a u l t t o z e r o .
20 move .w $0e (a6) , −4(a6) Get v a l u e _ a .
21 add .w $0c (a6) , −4(a6) Add v a l u e _ b .
22 move . l $08 (a6) , a0 F e t c h a d d r e s s o f Answer .
23 move . l −4(a6) , (a0) Copy temp i n t o Answer .
24 move . l (a7) + , a0 R e s t o r e working r e g i s t e r .
25 un lk a6 Clean up temp , a6 and a7 .
26 r t s

Listing 4.4: Contrived Assembly Code - AddTwoNumbers

This code starts by creating space, 4 bytes, for the local variable named temp using the LINK

instruction which creates a stack frame big enough to hold all the local variables required, and sets
A6 to be the frame pointer. It does this effectively as per the following code:

1 move . l a6 ,−(a7) Save c u r r e n t a6 .
2 movea . l a7 , a6 A6 i s t h e f rame p o i n t e r .
3 adda . l #−4, a7 C r e a t e s p a c e f o r l o c a l s .

Listing 4.5: LINK Effective Code

With a6 as the frame pointer, the code can access local variables using a negative offset from A6,
and access the function parameters with a positive offset from A6. Any working registers pushed
onto the stack will go below the space required for the local variables used in the function. At this
point, the stack looks like Figure 4.1

Figure 4.1: The stack structure

After setting the temp local variable to zero, the calculation is done and the result stored in the long
word pointed to by result which is the address of the variable Answer, and the stack is tidied by
popping A0 and then by unwinding the stack frame previously allocated using the UNLK instruction,
which effectively, does this:

1 move . l a6 , a7 S e t a7 back a g a i n .
2 move . l (a7) + , a6 R e t r i e v e p r e v i o u s a6 .

Listing 4.6: UNLK Effective Code

And now, A7 points once again, at the return address in main, where execution will continue. The
local variable temp is no more, it has ceased to be, it has shuffled off its mortal coil and gone to
meet its maker, etc.1

1Monty Python’s Dead Parrot sketch.

5. LibGen News

And it’s good news, of a sort!

As my wife was away for the weekend recently, I took the opportunity to spend some time going
through the problems I have been having with LibGen.

If you remember, I had managed to reach a stage where the program would assemble and execute,
but on exiting, QPC would be trashed in as much as the cursor passed behind the window for QPC
and therefore I was unable to get any further work done within QPC and I had to kill it.

This problem could be reproduced at will, and was apparent even if all I did was ex LibGen_exe

and then, when it was running, pressed ESC to escape. QPC was hosed at this point.

It turned out that some modifications I had made to the window definition, in order to allow me the
ability to create a new application sub-window menu dynamically, had caused the problem. One
problem that I did notice was that I had set the pointer to the menu items status bytes to be zero,
which meant that it used the status bytes for the main window’s loose items instead.

There were probably other errors as well, but in the end, I recreated the Window using SETW as
per the original article in QL Today, and everything is fine again.

So, the good news is, I’ve got a working starting point for the rest of the development. The bad
news? Time is never on my side!

6. What’s in a Name?

A thread on the QL Forum, entitled Command Line Parameters mentioned at one point, the ability
to get a parameter as a name rather than a string. Now in all my years of Assembly programming,
writing DJToolkit etc, I’ve never really bothered with names. The following listing is a small
example of how to copy a single name parameter as passed to a procedure or function written in
Assembly.

It does not do anything useful, other than take the name passed, run some checks on it, then if valid,
copies it to a buffer and prints it to SuperBasic channel #1 which is assumed to be open.

6.1 The Code

1 ; ===
2 ; A t e s t r o u t i n e t o f e t c h a name from t h e s u p p l i e d p a r a m e t e r s t o
3 ; a PROCedure i n t h i s case , which keeps t h i n g s s i m p l e . The name
4 ; i n q u e s t i o n i s c o p i e d t o a b u f f e r , t h e n p r i n t e d t o c h a n n e l # 1 .
5 ; Tha t i s a l l .
6 ; ===
7 ; USAGE:
8 ;
9 ; GetName #1 , s o m e t h i n g _ n o t _ i n _ q u o t e s

10 ;
11 ; GetName f r e d _ t x t
12 ; ===
13
14
15 s t a r t l e a d e f i n e , a1 P r o c e d u r e d e f i n i t i o n b l o c k .
16 move .w b p _ i n i t , a2 I n i t i a l i s e P r o c s / FNs .
17 jmp (a2) Do i t , e x i t t o S u p e r B a s i c .
18
19 d e f i n e dc .w 1 One P r o c e d u r e .

26 Chapter 6. What’s in a Name?

20 dc .w getName−∗ S t a r t i n g a d d r e s s o f f s e t .
21 dc . b 7 , ’ GetName ’ Name of p r o c e d u r e .
22 dc .w 0 End of P r o c e d u r e s .
23
24 dc .w 0 There a r e z e r o F u n c t i o n s .
25 dc .w 0 The end of t h o s e t o o .
26
27 b u f f e r ds .w 1+512 Word c o u n t and 1024 b y t e s .

Listing 6.1: GetName - Definition Block

We start the code with the standard new procedure and/or function definition block. Following this
is a buffer of 1024 bytes and an extra word for the usual QDOSMSQ string length. You will notice
I’ve used ds.w instead of ds.b to ensure that the buffer starts on a word boundary.

28 ; ===
29 ; A name t a b l e e n t r y i s 8 b y t e s , a s f o l l o w s :
30 ;
31 ; O f f s e t S i z e D e s c r i p t i o n
32 ; 0 word Type
33 ; 2 word Index of name i n name l i s t , o r −1 (e x p r e s s i o n .)
34 ; 4 long O f f s e t i n t o v a r i a b l e s a r e a f o r v a l u e o f t h i s
35 ; name , o r S u p e r B a s i c l i n e number , (SB F u n c t i o n s &
36 ; P r o c s) o r A b s o l u t e a d d r e s s i n memory (f o r MC
37 ; F u n c t i o n s / P r o c s) .
38 ; ===
39 ; A name l i s t e n t r y i s ’n ’ b y t e s , a s f o l l o w s :
40 ;
41 ; S i z e D e s c r i p t i o n
42 ; b y t e Length o f t h i s name . NOT word a l i g n e d .
43 ; b y t e s By tes o f name .
44 ; ===

Listing 6.2: GetName - Name Table & Name List Definition

The comment above simply reminds us (me!) of what a name table entry looks like. Each entry is 8
bytes and on entry to a procedure or function, A3 and A5 point, relative to A6, at the first and last
of the supplied parameters.

In the parameter list, the byte at offset 1 holds details of the separators used in the parameter list.
This is not used in the main name table though.

45 ; ===
46 ; A name l i s t e n t r y i s ’n ’ b y t e s , a s f o l l o w s :
47 ;
48 ; S i z e D e s c r i p t i o n
49 ; b y t e Length o f t h i s name . NOT word a l i g n e d .
50 ; b y t e s By tes o f name .
51 ; ===
52
53 e r r _ b p equ −15 Bad p a r a m e t e r e r r o r code .
54 b v _ n t b a s equ $18 O f f s e t t o Name Tab le .
55 b v _ n l b a s equ $20 O f f s e t t o Name L i s t .
56 bv_chbas equ $30 O f f s e t t o c h a n n e l t a b l e .

Listing 6.3: GetName - Equates

6.1 The Code 27

Another comment reminds us of how each entry in the name list looks, and is followed by a few
equates that will be used later.

Now we get to the meat of the code.

57 getName t s t . b 0 (a3 , a6 . l) I s t h e t y p e a NULL?
58 beq . s nameFound No , b a l e out , n o t a name .
59
60 b p _ e r r o r moveq # e r r_bp , d0 Bad p a r a m e t e r
61 r t s We a r e o u t o f h e r e !

Listing 6.4: GetName - Checking Parameters

We begin by testing to see if the type byte of the first parameter passed is unset, which indicates a
name. If it isn’t a name, we bale out to SuperBasic with a bad parameter error.

62 nameFound movea . l b v _ n t b a s (a6) , a0 Name Tab le s t a r t i n A0 .
63 move .w 2(a3 , a6 . l) , d0 Name l i s t i n d e x number .
64 l s l .w #3 , d0 M u l t i p l y by 8 .
65 adda .w d0 , a0 A0 = Name Tab le e n t r y .

Listing 6.5: GetName - We Have a Name

Here we know we have a name, so we begin by getting the offset of the start of the name table into
A0. From the passed parameter details, we extract the index number of this parameter’s entry in the
real name table (the parameter entries are copies and as each entry is 8 bytes, a quick shift three
bits left will do the multiplication for us.

Adding D0 to A0 gets us the offset from A6 where we can find this name in the name table.

66 ; ===
67 ; Now, from A0’ s p o s i t i o n i n t h e Name Table , a c c e s s t h e Name
68 ; L i s t , r e l a t i v e t o A6 of c o u r s e .
69 ; ===
70
71 move .w 2(a0 , a6 . l) , d0 O f f s e t i n t o t h e Name L i s t .
72 e x t . l d0 Make i t l ong .
73 add . l b v _ n l b a s (a6) , d0 D0 = Name L i s t o f f s e t .
74
75 ; ===
76 ; We now have t h e t e x t o f t h e name , i n t h e name l i s t , a t t h e
77 ; o f f s e t i n D0 .
78 ; ===

Listing 6.6: GetName - Find it in the Name List

In the name table, we pick up the offset into the name list for this name. The name list holds the
actual characters of the name. As ever, everything is relative to A6.

79 l e a b u f f e r , a3 D e s t i n a t i o n b u f f e r .
80 moveq #0 , d1 C l e a r l e n g t h WORD.
81 move . b 0 (a6 , d0 . l) , d1 Get l e n g t h BYTE .
82 c l r . b 0 (a3) B u f f e r s i z e word t o p b y t e
83 ; must be z e r o .
84
85 copy_name move . b 0 (a6 , d0 . l) , 1 (a3) Copy one b y t e i n t o b u f f e r .
86 addq . l #1 , a3 Next f r e e s p a c e i n b u f f e r .
87 addq . l #1 , d0 Next c h a r i n Name L i s t .
88 db ra d1 , copy_name Copy s i z e b y t e p l u s name

28 Chapter 6. What’s in a Name?

89 ; b y t e s .
90 move . b # l i n e f e e d , 1 (a3) And t a g on a l i n e f e e d .

Listing 6.7: GetName - Copy Name to Buffer

A3 is set to the address of the destination buffer for the characters in this name and d1.w is cleared
as we need a word sized counter. As the name list entry is byte sized, we get the length into D1’s
lower byte.

Normally, we would decrement D1.w before we start copying bytes, but in this case, we are copying
the size byte from the name list, so we keep hold of the extra one byte in the counter to account for
that.

The first byte in the buffer is cleared as the length word’s high byte can never be anything but zero
when copying from the name list.

The loop at copy_name copies first the size byte and then all the characters of the name into the
buffer one by one. When we are done copying, the linefeed character is stored at the end of the
name’s bytes.

You will note, at this point, that the length word at the start of the buffer has no idea that the linefeed
has been added. We are keeping it in the dark for now.

Looking at the above code, I should really have got rid of all those 1(An) offset instructions and
started with a post increment of A3 or similar, but hey, the code works! I’ll probably get a telling
off from George though! ;-)

91 ; ===
92 ; Now we have t h e t e x t o f t h e name i n our b u f f e r . F ind c h a n n e l
93 ; #1 i n t h e c h a n n e l t a b l e . We shouldn ’ t be o f f t h e end of t h e
94 ; t a b l e , so NOT CHECKED.
95 ; We assume #1 i s open too , so t h a t ’ s NOT CHECKED f o r e i t h e r .
96 ; ===
97 f indChan moveq #40 , d1 O f f s e t t o e n t r y # 1 .
98 move . l bv_chbas (a6) , a0 Channel t a b l e base o f f s e t .
99 adda . l d1 , a0 R e q u i r e d e n t r y f o r # 1 .

100 move . l 0 (a6 , a0 . l) , a0 A0 i s ID of c h a n n e l # 1 .

Listing 6.8: GetName - Checking Channel #1

The code above deep dives into the SuperBasic channel table. It takes no account of where the end
of the table might be, nor even if channel #1 is closed or not. It assumes much. Production code
would never do such a thing!

Each entry is 40 bytes long, and the channels number from zero, so we need the second entry in the
table.

A0 is set to the start of the channel table, D1 holds the offset to #1, and is added to A0. The first
long word in each entry is the channel id as far as QDOSMSQ is concerned. What SuperBasic
knows as #1 could be anything, but back in the old days, was something like $00010001. But never
assume this to be the case now.

101 ; ===
102 ; P r i n t t h e t e x t we r e a d from t h e name l i s t t o c h a n n e l # 1 .
103 ; ===
104 pr in tName move .w UT_MTEXT, a2 Ve c to r t o p r i n t a s t r i n g .
105 l e a b u f f e r , a1 The s t r i n g t o p r i n t .
106 a d d i .w # 1 , (a1) I n c l u d e t h e l i n e f e e d

6.2 How to Run the Code 29

107 jmp (a2) P r i n t i t , and e x i t
108 ; t o S u p e r B a s i c .

Listing 6.9: GetName - Printing the Name

And finally, with A0 holding the QDOSMSQ channel id, we point A1 at the buffer start and add
1 to the word stored there to account for that linefeed we sneaked in earlier. With the buffer now
ready to print, we jump into QDOSMSQ to print the text to #1 on the screen and never return. If
there are any errors in the printing of the name, SuperBasic will handle it.

6.2 How to Run the Code

Type the above into your favourite editor and assemble it. Then simply LRESPR the assembled file
and the new routine named GetName is available for use and abuse. To run it, type the following:

GetName T h i s _ h a s _ n o _ q u o t e s

This example will simply print what you passed, on screen, wherever channel #1 happens to be.
Remember to run this in a SuperBasic or Sbasic that has at least channel #1 open. Other examples
could be file names:

GetName f l p 1 _ b o o t
GetName w i n 1 _ s o u r c e _ q l t o d a y _ L i b G e n

And if you try passing a number or a string, then you should get a Bad Parameter error message.

6.3 What if There Are More Parameters?

The code example assumes only one parameter will be passed, but makes no checks. In real code,
you might be expecting a number of parameters so you would check the numbers passed and their
types before fetching them one by one (for the names) and then getting the others in groups as per
normal.

You don’t need to clean the values for names off the stack as they are never on it. You will, for the
strings, integers etc. Not so much in procedures, but most definitely in functions.

7. QL Assembly - Comments by George Gwilt

The following is a list of observations and comments from George, on the first version of the
QL_Assembly.pdf eBook, which was made available for download just before Christmas. Since
then, it has been updated to include the following.

Here are some notes on your Assembly Language Programming Series.

1. The definition of LEA on page 37 should state that the effective address put into the address
register is a long word. The official definition by Motorola states that the size is long.
[ND] Fixed.

2. The PEA instruction is defined on page 39. As for LEA the size for PEA is long. This should
be made clear.
[ND] Fixed.

3. On page 39 you ask what use PEA is, when LEA could be used instead. There are three
answers.

(a) Using LEA requires the use of a register, such as A1, whereas PEA does not. It also
needs one more instruction.

(b) PEA allows you to choose between several subroutines but return to the same address
form each. An example occurs in GWASS:

1 PEA INS_FP4 t h e r e t u r n a d d r e s s
2 BEQ FP_XD
3 BRA FP_XS

Listing 7.1: PEA Example from Gwass Assembler

(c) PEA can be used to put a number on the stack. EG

1 PEA 4 p u t s 4 on t h e s t a c k .

Listing 7.2: PEA Stacking a Literal Value

[ND] I did cover these in the book, at least the part about needing two instructions, and a
register.

32 Chapter 7. QL Assembly - Comments by George Gwilt

4. On page 40 the first line is wrong (as you can easily see!).
[ND] Yes indeed I can! Oops.

5. On the same page you deal with LINK, suggesting that it is probably most used by compilers.
The official Motorola User’s Manual says that LINK and UNLK can be used to maintain a
linked list of local variables and parameter areas on the stack for nested subroutine calls.
As it happens I use LINK/UNLK in GWASS as part of the assembly of macros. Each area
allocated by LINK is used to store the macro parameters. Since the number of these can vary
from macro to macro, I need to use LINK with a variety of displacement values.
Moreover, since macros can contain calls to other macros, the set of LINK/UNLK instructions
can indeed be nested.
In order to allow a variety of displacements I produce a table of pointers to the different LINK
instructions needed. This, of course, is done by means of a macro.
One problem with the use of nested LINKs is that each time you use a further one the available
stack space becomes smaller. To avoid trouble I check for each new LINK that there will
indeed be enough space for it.
[ND] See elsewhere in this issue for a few examples of PEA, LINK and UNLK.

6. Section 6.4 deals with exceptions. The descriptions of the stack frame at the bottom of page
48 and the top of page 49 are upside down. I think this is copied (wrongly) from Pennel’s
QDOS Companion page 91. Also, the description on page 49 is an atypical exception stack
frame and applies only to the 68000/8 Bus or Address Error.
[ND] It was actually copied from the official Motorola 68000 Programmer’s Reference
Manual, 4th Edition page 39. On that page there is a diagram of the MC68000 and MC68008
Group 1 and Group 2 Exception Stack Frame which shows the SSP pointing at the Status
Register at the low address of the stack frame, then the PC high word and PC low word are
next, going up in memory.
I wonder if the Motorola book is wrong?
The final line on page 48 explains that the diagram on page 49 is indeed for a BUS ERROR,
ADDRESS EROR or a RESET exception and that those three differ from all the others.]

7. Section 6.5 deals with a redirection of some of the traps and exception vectors. These range
from address error to trap #15. You then show how to program each exception handler. I
would very much suggest that this is definitely something to avoid. The main reason for
MT.TRAPV probably is to allow the user to alter only one or two of the handlers, in particular
the traps numbered 5 to 15, which are not used by QDOS.
[ND] Fair point. The example did show redefining all the available vectors, which could be
handy, in a debugger/monitor perhaps. I agree that redefining one or two might be more
common.

8. A minor point in 7.2 on page 54 is that I would use

1 jmp (a2)

Listing 7.3: Saving an RTS Instruction

instead of

1 j s r (a2)
2 r t s

Listing 7.4: Wasting an RTS Instruction

[ND] Yes, I have a habit of doing that.
9. You can operate doubly linked lists, described on page 118 by using only one pointer instead

of two. Replace the two addresses, next (A say) and prior (B say) by their XOR combination
(C say).

33

Thus
C = AxorB

so that
B = AxorC

and
A = BxorC

[ND] This is quite neat, and I have seen it used before, a long time back. I suspect back then
there was a need to save every possibly byte at the expense of having to use a couple more
instructions to extract the data required - but I am rather fond of the XOR operation, I have
to say.
To illustrate how such a doubly linked list can be operated I have produced a small PE
program. This has loose items A, D, H and W.

• A adds an item (to the start of the list).
• D deletes an item from the list.
• H prints the number of items in the list.
• W prints, in hex, the address of an item.

Since this program is designed to show how to perform these operations not as a real working
program with a real list, the list is constrained to consist of items which are simply a digit
between 0 and 9 inclusive.
The minimum initial information you need is the address of the first item, stored at fadd(A6),
and the address of the last item, stored at ladd(A6).
These are made zero when the program starts so that initially there is no list.
The program is given below.

1 ; LIST a_asm
2
3
4 b r a . s s t a r t
5 dc . l 0
6 dc .w $4afb
7 fname dc .w fname_e−fname−2
8 dc . b " LIST v1 . 0 1 "
9 fname_e ds . b 0

10 ds .w 0
11
12 i n win1_as s_pe_keys_pe
13 i n w i n 1 _ a s s _ p e _ q d o s _ p t
14 i n win1_ass_pe_keys_wwork
15 i n w i n 1 _ a s s _ p e _ k e y s _ w s t a t u s
16 i n win1_ass_pe_keys_wman
17 i n win1_ass_pe_keys_wdef
18 i n w i n 1 _ l i b _ h e d 1
19
20 r s s e t 0
21 i d r s . l 1
22 wmvec r s . l 1
23 s l i m i t r s . l 1
24 fadd r s . l 1
25 l a d d r s . l 1
26 num r s . l 1 long i n t f o r c o n v e r s i o n
27 buf r s . l 2 ASCII hex of num
28 ∗

34 Chapter 7. QL Assembly - Comments by George Gwilt

29 s t a r t l e a (a6 , a4 . l) , a6 d a t a s p a c e
30 c l r . l f add (a6) mark . .
31 c l r . l l a d d (a6) . . no l i s t
32 b s r . s ope open a con c h a n n e l . .
33 move . l a0 , i d (a6) . . keep t h e ID
34 moveq # i o p _ p i n f , d0
35 moveq #−1,d3
36 t r a p #3
37 t s t . l d0 p t r _ g e n p r e s e n t ? . .
38 bne s u i −−−−> . . no
39 move . l a1 , wmvec (a6) keep WM v e c t o r . .
40 beq s u i −−−−> . . wasn ’ t t h e r e !
41 movea . l a1 , a2 s e t WM v e c t o r i n A2
42 l e a s l i m i t (a6) , a1
43 moveq #0 , d2 t h i s must be z e r o
44 moveq # i o p _ f l i m , d0 max s i z e o f window . .
45 t r a p #3
46 s u b i . l #$C0008 , (a1) . . l e s s 12 , 8
47 l e a wd0 , a3 window d e f i n i t i o n add r
48 move . l #ww0_0 , d1 s i z e o f working d e f i n i t i o n . .
49 b s r g e t s p . . s e t s ALCHP’ d add r . .
50 movea . l a0 , a4 . . t o A0 and t o A4
51
52 ; We need t o s e t t h e s t a t u s a r e a t o z e r o s
53 ; and t h e l o o s e i t e m s t o " a v a i l a b l e " (z e r o)
54
55 l e a wst0 , a1 S t a t u s . .
56 movea . l a1 , a0 . . a r e a . .
57 moveq # wst0_e−wst0 −1,d1 b y t e s t o c l e a r − 1
58 s t 1 c l r . b (a0)+
59 dbf d1 , s t 1
60 movea . l i d (a6) , a0 Rep lace t h e c h a n n e l ID
61 move . l wd_xmin+ wd_rbase (a3) , d1 minimum s i z e
62 a n d i . l #$FFF0FFF , d1 Lop o f f s c a l i n g f a c t o r s
63 j s r wm_setup (a2) S e t up working de fn
64 moveq #−1,d1 S e t t h e window . .
65 j s r wm_prpos (a2) . . where t h e p o i n t e r i s
66 j s r wm_wdraw (a2) Draw t h e c o n t e n t s
67 wrpt j s r wm_rptr (a2) Read t h e p o i n t e r
68
69 beq . s n o _ e r r S i n c e D0 i s z e r o t h e n . .
70 ; . . D4 i s non z e r o
71 b r a s u i −−−−> D0 i s non z e r o
72
73
74 ∗
75
76 con dc .w 3
77 dc . b ’ con ’
78
79 ope l e a con , a0 To open " con " . .
80 moveq #−1,d1 . . f o r t h i s j o b
81 moveq #0 , d3
82 moveq # io_open , d0
83 t r a p #2
84 r t s

35

85
86 ; We come h e r e i f we e x i t from wm_rptr w i t h o u t an e r r o r
87 ; Th i s means t h a t D4 i s non−z e r o which i n t u r n means e i t h e r t h a t
88 ; t h e r e was a window e v e n t (eg CTRL / F4) o r t h a t a l o o s e i t em
89 ; a c t i o n r o u t i n e has s e t a non−z e r o v a l u e i n D4 . I f t h e r e was a
90 ; window e v e n t (and no l o o s e i t em) t h e a p p r o p r i a t e b i t w i l l have
91 ; been s e t i n t h e e v e n t v e c t o r i n t h e s t a t u s a r e a .
92
93 ; I f a l o o s e i t em has a s e l e c t key e q u a l t o t h a t f o r an even t ,
94 ; t h e e v e n t w i l l n o t be d e t e c t e d by WM_RPTR s i n c e t h e l o o s e
95 ; i tem ’ s a c t i o n r o u t i n e w i l l have been c a l l e d i n s t e a d . The l o o s e
96 ; i tem ’ s a c t i o n r o u t i n e can t h e n s e t t h e e v e n t b i t i n t h e e v e n t
97 ; v e c t o r and f o r c e an e x i t from WM_RPTR by s e t t i n g t h e e v e n t
98 ; number i n D4 . In t h a t c a s e t h e f o l l o w i n g code would be used .
99 ; On t h e o t h e r hand t h e l o o s e i tem ’ s a c t i o n r o u t i n e c o u l d

100 ; p r o c e s s t h e e v e n t i n t e r n a l l y w i t h o u t e x i t i n g from WM_RPTR.
101
102 n o _ e r r movea . l (a4) , a1 s t a t u s a r e a
103 b t s t #p t__can , wsp_weve (a1)
104 bne s u i E x i t
105
106 b t s t # pt__move , wsp_weve (a1)
107 beq . s wrp t
108 b s r move
109 b r a . s wrp t
110
111
112 ; Loose i t em a c t i o n r o u t i n e s
113
114 ; MOVE
115
116 afun0_0 b s r move
117 a f 1 move .w wwl_item (a3) , d1 i t em number
118 move . b #wsi_mkav , w s _ l i t em (a1 , d1 .w) ask f o r redraw
119 moveq #−1,d3 s e l e c t i v e draw
120 j s r wm_ldraw (a2)
121 c l r . b w s _ l i t e m (a1 , d1 .w) a v a i l a b l e
122 moveq #0 , d4
123 moveq #0 , d0
124 r t s
125
126 ; EXIT
127
128 afun0_3 moveq #0 , d0
129 moveq # pt__can , d4 ESC
130 b s e t # p t__can , wsp_weve (a1)
131 r t s
132
133 ; A − Add an i t em t o t h e l i s t
134
135 afun0_1 move . l a1 ,−(sp)
136 b s r dwin
137 b s r c l s c l e a r window
138 l e a pt_1 , a5 t e x t
139 b s r mtex t
140 moveq #−1,d3

36 Chapter 7. QL Assembly - Comments by George Gwilt

141 moveq #0 , d7
142 moveq # i o _ f b y t e , d0 i t em i n D1 . B
143 b s r t p 3
144 move . b d1 , d7
145 s u b i . l # ’0 ’ , d7 0 t o 9 (we hope)
146 bmi a f 1 _ e r −−−−> (t e 6)
147 cmpi . b #9 , d7
148 b g t a f 1 _ e r −−−−>
149 b s r a d d _ i t
150 beq a f1_2 OK (t e 5)
151 bmi a f1_3 d u p l i c a t e (t e 4)
152 l e a te2 , a5 l i s t f u l l (t e 2)
153 b r a a f1_4
154 a f 1 _ e r l e a te6 , a5
155 b r a a f1_4
156 a f1_2 l e a te5 , a5
157 b r a a f1_4
158 a f1_3 l e a te4 , a5
159 a f1_4 b s r mtex t
160 movea . l (sp) + , a1
161 b r a a f 1
162
163
164 ; W − Where i s t h e i t em ?
165
166 afun0_2 move . l a1 ,−(sp)
167 b s r dwin
168 b s r c l s c l e a r window
169 l e a pt_2 , a5 t e x t
170 b s r mtex t
171 moveq #−1,d3
172 moveq #0 , d7
173 moveq # i o _ f b y t e , d0 i t em i n D1 . B
174 b s r t p 3
175 move . b d1 , d7
176 s u b i . l # ’0 ’ , d7 0 t o 9 (we hope)
177 bmi a f 1 _ e r −−−−> (t e 6)
178 cmpi . b #9 , d7
179 b g t a f 1 _ e r −−−−>
180 b s r t h e r e
181 beq a f5_3 Not There
182 b p l a f2_1 OK
183 l e a te1 , a5
184 b r a a f1_4
185 a f2_1 move . l d0 , num (a6) f o r p r i n t i n g n num (A6)
186 movem . l a0 / a2−3,−(sp) keep r e g s
187 l e a num , a1 a r i t h m e t i c b u f f e r
188 l e a buf , a0 s p a c e f o r answer
189 movea .w c n _ i t o h l , a2
190 j s r (a2)
191 movem . l (sp) + , a0 / a2−3 r e p l a c e r e g s
192 l e a buf (a6) , a1 f o r p r i n t i n g
193 moveq #8 , d2 t o p r i n t 8 b y t e s
194 moveq # i o _ s s t r g , d0
195 b s r t p 3
196 movea . l (sp) + , a1 r e s e t A1

37

197 b r a a f 1 r e t u r n
198
199 ; H − How many i n t h e l i s t ?
200
201 afun0_4 move . l a1 ,−(sp)
202 b s r dwin
203 b s r c l s
204 b s r howmany number −> A4
205 move .w d4 , d1
206 movem . l a2−3,−(sp)
207 movea .w u t_min t , a2
208 j s r (a2)
209 movem . l (sp) + , a2−3
210 movea . l (sp) + , a1
211 b r a a f 1
212
213 ; D − D e l e t e an i t em from t h e l i s t
214
215 afun0_5 move . l a1 ,−(sp)
216 b s r dwin
217 b s r c l s c l e a r window
218 l e a pt_5 , a5 t e x t
219 b s r mtex t
220 moveq #−1,d3
221 moveq #0 , d7
222 moveq # i o _ f b y t e , d0 i t em i n D1 . B
223 b s r t p 3
224 move . b d1 , d7
225 s u b i . l # ’0 ’ , d7 0 t o 9 (we hope)
226 bmi a f 1 _ e r −−−−> (t e 6)
227 cmpi . b #9 , d7
228 b g t a f 1 _ e r −−−−>
229 b s r d r o p _ i t
230 bne a f5_1 OK
231 af5_3 l e a te3 , a5 ’ n o t t h e r e ’
232 b r a a f5_2
233 a f5_1 l e a te7 , a5 ’ v a l u e dropped ’
234 a f5_2 b s r mtex t
235 movea . l (sp) + , a1
236 b r a a f 1
237
238 hed1 <’A’ > , t 1
239 hed1 <’W’ > , t 2
240 hed1 <’H’ > , t 3
241 hed1 <’D’ > , t 4
242
243 dwin move . l a1 ,−(sp)
244 moveq #0 , d1
245 moveq #7 , d2
246 j s r wm_swinf (a2)
247 movea . l (sp) + , a1
248 r t s
249
250 c l s moveq #−1,d3
251 moveq # s d _ c l e a r , d0
252 t p 3 t r a p #3

38 Chapter 7. QL Assembly - Comments by George Gwilt

253 r t s
254
255 ; mtex t p r i n t s t h e s t r i n g @A5
256
257 m t x t _ r e g r e g d1−2/ a1−3
258 mtex t movem . l mtx t_ reg ,−(sp)
259 movea .w u t_mtex t , a2
260 movea . l a5 , a1
261 j s r (a2)
262 movem . l (sp) + , m t x t _ r e g
263 r t s
264
265 ; Adds i t em wi th v a l u e D7 . L
266 ; D0 = 0 i f OK : + i f f u l l : − i f a l r e a d y t h e r e
267 a i _ r e g r e g d0−1/ d4 / a0−1
268 a d d _ i t movem . l a i _ r e g ,−(sp)
269 b s r howmany
270 cmpi .w #9 , d4
271 b l e a i 5 OK
272 move .w #1 , d0
273 b r a a i 2 F u l l
274 a i 5
275 b s r t h e r e
276 b l e a i 3 n o t a l r e a d y t h e r e
277 moveq #−1,d0 mark a l r e d y t h e r e
278 b r a a i 2
279 a i 3 moveq #8 , d1
280 b s r g e t s p
281 move . l d7 , 4 (a0) S e t i t em v a l u e
282 t s t . l f add (a6)
283 bne a i 1
284 move . l a0 , f add (a6)
285 move . l a0 , l a d d (a6)
286 c l r . l (a0)
287 b r a a i 4
288 a i 1 movea . l f add (a6) , a1
289 move . l a1 , (a0)
290 move . l (a1) , d0
291 move . l a0 , d1
292 e o r . l d1 , d0
293 move . l d0 , (a1) u p d a t e p o i n t e r s
294 move . l a0 , f add (a6) new s t a r t a d d r e s s
295 a i 4 moveq #0 , d0 mark OK
296 a i 2 movem . l (sp) + , a i _ r e g
297 r t s
298
299 ; To d e l e t e t h e i t em wi th v a l u e i n D7 . L
300 ; F i r s t f i n d t h e i t em t h e n d e l e t e i t
301 ; On e x i t D0 . L = 0 NOT THERE
302 ; = 1 Done OK
303
304 d i _ r e g r e g d0−1/d4−6/ a0 / a2 / a4
305 d r o p _ i t movem . l d i _ r e g ,−(sp)
306 b s r t h e r e
307 beq d i 6 n o t t h e r e
308 movea . l d0 , a4

39

309 move . l (a4) , d1
310 e o r . l d6 , d1 n e x t a d d r e s s
311
312
313
314 ; D6 . L = p r e v i o u s a d d r e s s
315 ; A4 . L and D0 . L = a d d r e s s t o be d e l e t e d
316 ; D1 . l = n e x t a d d r e s s
317
318 b s r r e c h p r e t u r n i t em s p a c e t o t h e heap
319 t s t . l d6
320 bne d i 3 t h e r e i s a p r e v i o u s a d d r e s s
321 t s t . l d1
322 bne d i 4 t h e r e i s a n e x t a d d r e s s
323
324 ; h e r e t h e l i s t i s on ly t h e i t em t o be d e l e t e d ! !
325
326 c l r . l f add (a6)
327 c l r . l l a d d (a6)
328 b r a d i 8
329
330 ; n e x t b u t no p r e v i o u s
331
332 d i 4 move . l d1 , f add (a6) new 1 s t a d d r e s s
333 movea . l d1 , a0
334 d i 7 move . l a4 , d0
335 e o r . l d0 , (a0)
336 d i 8 moveq #1 , d0 mark OK
337 d i 6 movem . l (sp) + , d i _ r e g
338 r t s
339
340 d i 3 t s t . l d1
341 bne d i 5 bo th p r e v i o u s and
342 ; n e x t a d d r e s s e s
343
344 ; p r e v i o u s b u t no n e x t
345
346 move . l d6 , l a d d (a6) new l a s t a d d r e s s
347 movea . l d6 , a0
348 b r a d i 7
349
350 ; Both b e f o r e (B) and a f t e r (A) t h e c u r r e n t (C)
351
352 d i 5 movea . l d1 , a0
353 move . l (a0) , d3 AC
354 movea . l d6 , a0
355 move . l (a0) , d4 BC
356 move . l (a4) , d5 CC
357
358 move . l a4 , d0 C −> D0
359
360 e o r . l d0 , d4
361 e o r . l d1 , d4 New BC
362
363 e o r . l d0 , d3
364 e o r . l d6 , d3 New AC

40 Chapter 7. QL Assembly - Comments by George Gwilt

365
366 movea . l d1 , a0
367 move . l d3 , (a0) s e t New AC
368
369 movea . l d6 , a0
370 move . l d4 , (a0) s e t New BC
371
372 b r a d i 8
373
374
375
376
377 ; R e t u r n s t h e number o f i t e m s i n t h e l i s t i n D4 .W
378 ; Uses no o t h e r r e g i s t e r s
379 hm_reg r e g d1−3/ a0
380 howmany movem . l hm_reg ,−(sp)
381 c l r .w d4
382 move . l f add (a6) , d1 1 s t a d d r e s s
383 beq hm1 none ! ! !
384 c l r . l d2
385 addq .w #1 , d4 advance c o u n t
386 hm2 movea . l d1 , a0
387 move . l (a0) , d3 p o i n t e r
388 e o r . l d2 , d3 n e x t a d d r e s s
389 beq hm1 f i n i s h e d
390 move . l d1 , d2 new p r e v i o u s
391 move . l d3 , d1 new c u r r e n t
392 addq .w #1 , d4 advance c o u n t
393 b r a hm2
394 hm1 movem . l (sp) + , hm_reg
395 t s t .w d4
396 r t s number i n D4 .W
397
398 ; There r e t u r n s i n D0 . L t h e a d d r e s s o f t h e i t em wi th v a l u e i n D7
399 ; D7 . L and i n D6 . L t h e p r e v i o u s a d d r e s s .
400 ; I f n o t found D0 . L = 0 ,
401 ; i f l i s t empty D0 . L = −1
402 ; Uses no o t h e r r e g i s t e r s
403
404 t h _ r e g r e g d4 / a0 / a2
405 t h e r e movem . l t h _ r e g ,−(sp)
406 c l r . l d6 p r e v i o u s a d d r e s s
407 move . l f add (a6) , d0 1 s t a d d r e s s
408 beq t h 4 L i s t Empty
409 b r a t h 1
410 t h 2 movea . l d0 , a2
411 move . l d6 , d4
412 move . l d0 , d6
413 move . l (a2) , d0 p o i n t e r
414 e o r . l d4 , d0 n e x t a d d r e s s
415 beq t h 3 n o t found
416 t h 1 movea . l d0 , a0
417 cmp . l 4 (a0) , d7 found ? . .
418 bne t h 2 . . no
419 t h 3 movem . l (sp) + , t h _ r e g
420 t s t . l d0 z e r o = n o t found :

41

421 ; + = found :
422 ; − = empty
423 r t s
424
425 t h 4 moveq #−1,d0 mark ’ empty ’
426 b r a t h 3
427
428 ; program l i s t
429
430 p r _ l s t dc .w afun0_1−p r _ l s t
431 dc .w afun0_2−p r _ l s t
432 dc .w afun0_4−p r _ l s t
433 dc .w afun0_5−p r _ l s t
434
435 ; s t r i n g l i s t
436
437 p t _ l s t dc .w pt_1−p t _ l s t
438 dc .w pt_2−p t _ l s t
439 dc .w pt_4−p t _ l s t
440 dc .w pt_5−p t _ l s t
441
442 hed1 <’ Give v a l u e t o add ’ > , p t_1
443 hed1 <’ Give v a l u e t o f i n d ’ > , p t_2
444 hed1 <’ S i z e i s ’ > , p t_4
445 hed1 <’ Give v a l u e t o d e l e t e ’ > , p t_5
446
447 ; messages
448
449 hed1 <’ L i s t Empty ’ > , t e 1
450 hed1 <’ L i s t F u l l ’ > , t e 2
451 hed1 <’ Not There ’ > , t e 3
452 hed1 <’ D u p l i c a t e Item ’ > , t e 4
453 hed1 <’ Value Added ’ > , t e 5
454 hed1 <’ Out o f Range ’ > , t e 6
455 hed1 <’ Value Dropped ’ > , t e 7
456
457 i n w i n 1 _ a s s _ p e _ l i s t w _ a s m
458
459 i n w i n 1 _ a s s _ p e _ p e a s _ s y m _ l s t
460 l i b w i n 1 _ a s s _ p e _ p e a s _ b i n
461
462
463 i n w i n 1 _ a s s _ p e _ c s p r c _ s y m _ l s t
464
465 l i b w i n 1 _ a s s _ p e _ c s p r c _ b i n

Listing 7.5: George’s Linked List Example Program

Thanks George. I appreciate your taking the time to go over some stuff I wrote many years ago,
and bringing these “problems” to my attention.

	1 Preface
	1.1 Feedback
	1.2 Subscribing to The Mailing List
	1.3 Contacting The Mailing List

	2 Merry Christmas
	3 Comments on Issue 1
	3.1 Special Programs
	3.2 The Extra 12 bytes
	3.3 The EX Files - Page 6
	3.4 LibGen Lite Errors
	3.5 ET Phone Home
	3.6 Actual Use of LibGen_Lite

	4 Chips and PEAs
	5 LibGen News
	6 What's in a Name?
	6.1 The Code
	6.2 How to Run the Code
	6.3 What if There Are More Parameters?

	7 QL Assembly - Comments by George Gwilt
	Index

